Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.947
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Chemosphere ; 354: 141700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490615

RESUMO

Wastewater treatment plants play a crucial role in water security and sanitation, ensuring ecosystems balance and avoiding significant negative effects on humans and environment. However, they determine also negative pressures, including greenhouse gas and odourous emissions, which should be minimized to mitigate climate changes besides avoiding complaints. The research has been focused on the validation of an innovative integrated biological system for the sustainable treatment of complex gaseous emissions from wastewater treatment plants. The proposed system consists of a moving bed biofilm reactor coupled with an algal photobioreactor, with the dual objective of: i) reducing the inlet concentration of the odourous contaminants (in this case, hydrogen sulphide, toluene and p-xylene); ii) capturing and converting the carbon dioxide emissions produced by the degradation process into exploitable algal biomass. The first reactor promoted the degradation of chemical compounds up to 99.57% for an inlet load (IL) of 22.97 g m-3 d-1 while the second allowed the capture of the CO2 resulting from the degradation of gaseous compounds, with biofixation rate up to 81.55%. The absorbed CO2 was converted in valuable feedstocks, with a maximum algal biomass productivity in aPBR of 0.22 g L-1 d-1. Dairy wastewater has been used as alternative nutrient source for both reactors, with a view of reusing wastewater while cultivating biomass, framing the proposed technology in a context of a biorefinery within a circular economy perspective. The biomass produced in the algal photobioreactor was indeed characterized by a high lipid content, with a maximum percentage of lipids per dry weight biomass of 35%. The biomass can therefore be exploited for the production of alternative and clean energy carrier. The proposed biotechnology represents an effective tool for shifiting the conventional plants in carbon neutral platform for implementing principles of ecological transition while achieving high levels of environmental protection.


Assuntos
Microalgas , Purificação da Água , Humanos , Águas Residuárias , Dióxido de Carbono/metabolismo , Ecossistema , Odorantes , Microalgas/metabolismo , Biotecnologia , Purificação da Água/métodos , Biomassa , Nutrientes
2.
Appl Microbiol Biotechnol ; 108(1): 200, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326604

RESUMO

The plants of the genus Salacia L. are the storehouse of several bioactive compounds, and are involved in treating human diseases and disorders. Hitherto, a number of reports have been published on in vitro biotechnology as well as microbial involvement in the improvement of Salacia spp. The present review provides comprehensive insights into biotechnological interventions such as tissue culture for plant propagation, in vitro cultures, and endophytic microbes for up-scaling the secondary metabolites and biological potential of Salacia spp. Other biotechnological interventions such as molecular markers and bio-nanomaterials for up-grading the prospective of Salacia spp. are also considered. The in vitro biotechnology of Salacia spp. is largely focused on plant regeneration, callus culture, cell suspension culture, somatic embryogenesis, and subsequent ex vitro establishment of the in vitro-raised plantlets. The compiled information on tissue cultural strategies, involvement of endophytes, molecular markers, and nanomaterials will assist the advanced research related to in vitro manipulation, domestication, and commercial cultivation of elite clones of Salacia spp. Moreover, the genetic diversity and other molecular-marker based assessments will aid in designing conservation policies as well as support upgrading and breeding initiatives for Salacia spp. KEY POINTS: • Salacia spp. plays a multifaceted role in human health and disease management. • Critical and updated assessment of tissue culture, endophytic microbes, metabolites, molecular markers, and bio-nanomaterials of Salacia spp. • Key shortcomings and future research directions for Salacia biotechnology.


Assuntos
Salacia , Humanos , Biotecnologia , Plantas , Técnicas de Cultura de Células , Endófitos
3.
Cannabis Cannabinoid Res ; 9(1): 35-48, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38252502

RESUMO

Since the legalization of recreational cannabis in Canada in 2018, the number of licenses for this crop has increased significantly, resulting in an increase in waste generated. Nevertheless, cannabis roots were once used for their therapeutic properties, indicating that they could be valued today rather than dismissed. This review will focus on both traditional therapeutic aspects and potential use of roots in modern medicine while detailing the main studies on active phytomolecules found in cannabis roots. The environmental impact of cannabis cultivation and current knowledge of the root-associated microbiome are also presented as well as their potential applications in biotechnology and phytoremediation. Thus, several high added-value applications of cannabis roots resulting from scientific advances in recent years can be considered to remove them from discarded residues.


Assuntos
Cannabis , Cannabis/química , Biotecnologia , Canadá , Biodegradação Ambiental
4.
Int J Biol Macromol ; 253(Pt 4): 127017, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742902

RESUMO

Green synthesis of iron nanoparticles is a highly fascinating research area and has gained importance due to reliable, sustainable and ecofriendly protocol for synthesizing nanoparticles, along with the easy availability of plant materials and their pharmacological significance. As an alternate to physical and chemical synthesis, the biological materials, like microorganisms and plants are considered to be less costly and environment-friendly. Iron nanoparticles with diverse morphology and size have been synthesized using biological extracts. Microbial (bacteria, fungi, algae etc.) and plant extracts have been employed in green synthesis of iron nanoparticles due to the presence of various metabolites and biomolecules. Physical and biochemical properties of biologically synthesized iron nanoparticles are superior to that are synthesized using physical and chemical agents. Iron nanoparticles have magnetic property with thermal and electrical conductivity. Iron nanoparticles below a certain size (generally 10-20 nm), can exhibit a unique form of magnetism called superparamagnetism. They are non-toxic and highly dispersible with targeted delivery, which are suitable for efficient drug delivery to the target. Green synthesized iron nanoparticles have been explored for multifarious biotechnological applications. These iron nanoparticles exhibited antimicrobial and anticancerous properties. Iron nanoparticles adversely affect the cell viability, division and metabolic activity. Iron nanoparticles have been used in the purification and immobilization of various enzymes/proteins. Iron nanoparticles have shown potential in bioremediation of various organic and inorganic pollutants. This review describes various biological sources used in the green synthesis of iron nanoparticles and their potential applications in biotechnology, diagnostics and mitigation of environmental pollutants.


Assuntos
Ferro , Nanopartículas Metálicas , Ferro/química , Nanopartículas Metálicas/química , Bactérias/metabolismo , Sistemas de Liberação de Medicamentos , Biotecnologia/métodos , Extratos Vegetais/química , Plantas/química , Química Verde/métodos
5.
Top Curr Chem (Cham) ; 381(5): 27, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670112

RESUMO

Developing new, high-performance materials is a prerequisite for technological advancement. In comparison to bulk materials, quantum dots have a number of good advantages due to their small size, high surface area, and quantum dimensions. Quantum dots, two-dimensional materials with lateral dimensions less than 100 nm, can be generated by the quantum confinement effect. Mxene quantum dots (MQDs) retain some of their two-dimensional characteristics. They also exhibit novel physicochemical properties, including enhanced dispersibility in aqueous and nonaqueous phases, modification or doping capabilities, and photoluminescence. MQDs, due to their unique and diverse properties, have been receiving a great deal of attention as new members of the Mxene group and wide use for biotechnology, bioimaging, optoelectronics, catalysis, cancer therapy, etc. This review aims to provide an overview of the synthesis of MQDs, their optical properties, and their cancer therapy applications. MQDs exhibit remarkable photothermal and photodynamic features and can be suitable for bioimaging. In addition to obtaining bioimaging, photothermal therapy (PTT) and photodynamic therapy (PDT) effects simultaneously, MQDs have high biocompatibility in vitro and in vivo, providing evidence of their potential clinical utility. Herein, recent developments and future prospects concerning MQDs biomedical applications are discussed.


Assuntos
Neoplasias , Pontos Quânticos , Humanos , Biotecnologia , Catálise
6.
Food Res Int ; 172: 113179, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689932

RESUMO

The saprophytic basidiomycete Lentinus crinitus (L.) Fr is a Brazilian native fungus with pantropical occurrence. L. crinitus produces edible fruiting bodies with medicinal, nutritional, and biotechnological applications. The compounds from fungal fruiting bodies can be applied to the preparation of products in the food, cosmetic, biomedical, and pharmaceutical industries. Our aim was to review the literature on L. crinitus concerning its botanical description, geographical distribution, phytochemistry, pharmacological properties, nutritional value, and biotechnology potential (in vitro cultivation and enzyme production). Scientific search engines, including ScienceDirect, CAPES Journals Portal, Google Scholar, PubMed, SciELO, MEDLINE, LILACS, and SciFinder, were consulted to gather data on L. crinitus. The present review is an up-to-date and comprehensive analysis of the phytochemical compounds, phytopharmacological activities, and biotechnological value of L. crinitus. Extracts from L. crinitus have been reported to exhibit numerous in vitro pharmacological activities such as antioxidant, antifungal, antibacterial, antiviral, and anticancer. The substances in these extracts belong to different classes of chemical compounds such as polysaccharides, fatty acids, terpenes, phenolic acids, and flavonoids. Reviews on Brazilian native fungi are of great importance for scientific knowledge, with great applicability as a mirror for species of the same family. The ethnobotanical, phytochemical, pharmacological, ethnomedicinal, and biotechnological properties of L. crinitus highlighted in this review provide information for future studies and commercial exploitation, and reveal that this fungus has enormous potential for pharmaceutical, nutraceutical, biotechnological, and ecological applications.


Assuntos
Antibacterianos , Biotecnologia , Suplementos Nutricionais , Extratos Vegetais
7.
Molecules ; 28(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513391

RESUMO

Direct biocatalytic processes for CO2 capture and transformation in value-added chemicals may be considered a useful tool for reducing the concentration of this greenhouse gas in the atmosphere. Among the other enzymes, carbonic anhydrase (CA) and formate dehydrogenase (FDH) are two key biocatalysts suitable for this challenge, facilitating the uptake of carbon dioxide from the atmosphere in complementary ways. Carbonic anhydrases accelerate CO2 uptake by promoting its solubility in water in the form of hydrogen carbonate as the first step in converting the gas into a species widely used in carbon capture storage and its utilization processes (CCSU), particularly in carbonation and mineralization methods. On the other hand, formate dehydrogenases represent the biocatalytic machinery evolved by certain organisms to convert CO2 into enriched, reduced, and easily transportable hydrogen species, such as formic acid, via enzymatic cascade systems that obtain energy from chemical species, electrochemical sources, or light. Formic acid is the basis for fixing C1-carbon species to other, more reduced molecules. In this review, the state-of-the-art of both methods of CO2 uptake is assessed, highlighting the biotechnological approaches that have been developed using both enzymes.


Assuntos
Dióxido de Carbono , Anidrases Carbônicas , Dióxido de Carbono/química , Biocatálise , Biotecnologia , Formiatos , Formiato Desidrogenases/metabolismo , Anidrases Carbônicas/química
8.
Appl Microbiol Biotechnol ; 107(18): 5613-5625, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37480373

RESUMO

Shampoo ginger (Zingiber zerumbet) is a multipurpose ginger that has confirmed their role as food, medicine, and for decorative purposes. The rhizome possesses zerumbone, curcuminoids, and other bioactive molecules that play crucial roles in treating several human diseases. To date, several reports are existing on the in vitro biotechnology of Z. zerumbet. The present review highlights the consolidated clarification and comprehensive explanation of in vitro biotechnological implications based on plant tissue culture for the improvement of Z. zerumbet. Studies on biotechnological involvement in shampoo ginger were primarily emphasized in the study of the last 3 decades, for instance, in vitro regeneration, micro-rhizome production, callus culture, somatic embryogenesis, ex vitro establishment, and molecular assessment of in vitro-raised clones. Moreover, this review provides insights into different in vitro culture systems and endophytes involvement in the production of secondary metabolites. This review will assist for advanced research areas related to in vitro manipulation of shampoo ginger, especially for the commercial cultivation of secondary metabolites rich clones of Z. zerumbet. Moreover, it will provide an insight into crop upgrading and breeding programs of this underutilized, aromatic, and medicinal plant for amended yield and quality. KEY POINTS: • Z. zerumbet is an aromatic spice and an ornamental • This review comprehensively assesses Z. zerumbet tissue culture • Key shortcomings and future directions of Z. zerumbet biotechnology.


Assuntos
Zingiber officinale , Humanos , Biotecnologia , Diarileptanoides , Endófitos , Alimentos
9.
World J Microbiol Biotechnol ; 39(9): 254, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462834

RESUMO

Spent coffee grounds (SCG) are wastes generated in high amounts worldwide. Their composition makes them a promising feedstock for biotechnological processes. Here we show that the production of the biosurfactant surfactin by submerged culture of a Bacillus subtilis strain growing on SCG is possible, reaching concentrations up to 8.8 mg/L when using SCG at 8.3 g/L in the medium. In addition, we report a synergy between the production of surfactin and the recovery of melanoidins, an added-value compound already present in SCG. More specifically, the concentration of melanoidins in the culture medium increased between 2.1 and 2.5 times thanks to the presence of the B. subtilis in the culture. Furthermore, we have observed a strong interaction between surfactin and melanoidin aggregates through dynamic light scattering measurements, and that both of them can be co-purified with an acid precipitation. We have also characterized the interfacial and antioxidant properties of the cell-free supernatant and surfactin extract, as well as the distribution of the congeners of the biosurfactant. Altogether, this work describes a promising approach to obtain biosurfactants and antioxidant molecules in a single operation, which can be used to design several new formulations of interest for bioremediation, amendment of soils, food and cosmetics.


Assuntos
Antioxidantes , Café , Polímeros , Biotecnologia
10.
Polim Med ; 53(1): 69-79, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37338286

RESUMO

The available information on the abundance of restorative plants on earth is incomplete, and the data regarding botanicals from various countries differ significantly. The substantial development of the worldwide natural botanical market is attributable to the expanding revenue of global drug companies trading herbal medicines. This essential type of traditional medical care is depended on by approx. 72-80% of individuals. Even though numerous restorative plants are readily used, they have never been subject to the same strict quality guidelines as conventional drugs. Nonetheless, it is vital to have specific organic, phytochemical, and molecular tools and methods for identifying restorative plant species so that traditional and novel plant products can be safely used in modern medicine. Molecular biotechnology approaches provide a reliable and accurate way to identify botanicals and can be used to ensure the safety and efficacy of plant-based products. This review explores various molecular biotechnology approaches and methods for identifying botanicals.


Assuntos
Plantas Medicinais , Humanos , Biotecnologia , Fitoterapia/métodos
11.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2896-2903, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381971

RESUMO

A rich diversity of wild medicinal plant resources is distributed in China, but the breeding of new plant varieties of Chinese medicinal plants started late and the breeding level is relatively weak. Chinese medicinal plant resources are the foundation for new varieties breeding, and the plant variety rights(PVP) are of great significance for the protection and development of germplasm resources. However, most Chinese medicinal plants do not have a distinctness, uniformity, and stability(DUS) testing guideline. The Ministry of Agriculture and Rural Affairs has put 191 plant species(genera) on protection lists, of which only 30 are medicinal species(genera). At the same time, only 29 of 293 species(genera) plants in the Protection List of New Plant Varieties of the People's Republic of China(Forest and Grass) belong to Chinese medicinal plants. The number of PVP applications and authorization of Chinese medicinal plants is rare, and the composition of variety is unreasonable. Up to now, 29 species(genera) of DUS test guidelines for Chinese medicinal plants have been developed. Some basic problems in the breeding of new varieties of Chinese medicinal plants have appeared, such as the small number of new varieties and insufficient utilization of Chinese medicinal plant resources. This paper reviewed the current situation of breeding of new varieties of Chinese medicinal plants and the research progress of DUS test guidelines in China and discussed the application of biotechnology in the field of Chinese medicinal plant breeding and the existing problems in DUS testing. This paper guides the further application of DUS to protect and utilize the germplasm resources of Chinese medicinal plants.


Assuntos
Plantas Medicinais , Agricultura , Biotecnologia , Melhoramento Vegetal , Plantas Medicinais/genética
12.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1275-1289, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37154305

RESUMO

As human microbiome research advances, a large body of evidence shows that microorganisms are closely related to human health. Probiotics were discovered and used as foods or dietary supplements with health benefits in the last century. Microorganisms have shown broader application prospects in human health since the turn of the century, owing to the rapid development of technologies such as microbiome analysis, DNA synthesis and sequencing, and gene editing. In recent years, the concept of "next-generation probiotics" has been proposed as new drugs, and microorganisms are considered as "live biotherapeutic products (LBP)". In a nutshell, LBP is a living bacterial drug that can be used to prevent or treat certain human diseases and indications. Because of its distinct advantages, LBP has risen to the forefront of drug development research and has very broad development prospects. This review introduces the varieties and research advances on LBP from a biotechnology standpoint, followed by summarizing the challenges and opportunities for LBP clinical implementations, with the aim to facilitate LBP development.


Assuntos
Probióticos , Humanos , Suplementos Nutricionais , Bactérias , Desenvolvimento de Medicamentos , Biotecnologia
13.
Curr Pharm Des ; 29(15): 1193-1217, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37132105

RESUMO

Icacinaceae, an Angiospermic family comprising 35 genera and 212 accepted species, including trees, shrubs, and lianas with pantropical distribution, is one of the most outshining yet least explored plant families, which despite its vital role as a source of pharmaceuticals and nutraceuticals has received a meagre amount of attraction from the scientific community. Interestingly, Icacinaceae is considered a potential alternative resource for camptothecin and its derivatives, which are used in treating ovarian and metastatic colorectal cancer. However, the concept of this family has been revised many times, but further recognition is still needed. The prime objective of this review is to compile the available information on this family in order to popularize it in the scientific community and the general population and promote extensive exploration of these taxa. The phytochemical preparations or isolated compounds from the Icacinaceae family have been centrally amalgamated to draw diverse future prospects from this inclusive plant species. The ethnopharmacological activities and the associated endophytes and cell culture techniques are also depicted. Nevertheless, the methodical evaluation of the Icacinaceae family is the only means to preserve and corroborate the folkloristic remedial effects and provide scientific recognition of its potencies before they are lost under the blanket of modernization.


Assuntos
Etnobotânica , Extratos Vegetais , Humanos , Etnobotânica/métodos , Etnofarmacologia/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Compostos Fitoquímicos/farmacologia , Biotecnologia , Fitoterapia/métodos
14.
PLoS One ; 18(5): e0285079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37126533

RESUMO

Modern agricultural biotechnologies, such as those derived from genetic modification, are solutions that can enable an increase in food production, lead to more efficient use of natural resources, and promote environmental impact reduction. Crops with altered genetic materials have been extensively subjected to safety assessments to fulfill regulatory requirements prior to commercialization. The Brazilian National Technical Biosafety Commission (CTNBio) provides provisions for commercial release of transgenic crops in Brazil, including requiring information on pollen dispersion ability as part of environmental risk assessment, which includes pollen viability and morphology studies. Here we present the pollen viability and morphology of non-transgenic conventional materials, single-event genetically modified (GM) products, and stacked GM products from soybean, maize and cotton cultivated in Brazil. Microscopical observation of stained pollen grain was conducted to determine the percentage of pollen viability as well as pollen morphology, which is assessed by measuring pollen grain diameter. The pollen viability and diameter of GM soybean, maize and cotton, evaluated across a number of GM events in each crop, were similar to the conventional non-GM counterparts. Pollen characterization data contributed to the detailed phenotypic description of GM crops, supporting the conclusion that the studied events were not fundamentally different from the conventional control.


Assuntos
Biotecnologia , Produtos Agrícolas , Animais , Plantas Geneticamente Modificadas/genética , Produtos Agrícolas/genética , Agricultura , Pólen , Animais Geneticamente Modificados , Zea mays/genética , Glycine max/genética
15.
Sheng Wu Gong Cheng Xue Bao ; 39(5): 2053-2069, 2023 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-37212231

RESUMO

In recent years, the petroleum-based plastic pollution problem has been causing global attention. The idea of "degradation and up-cycling of plastics" was proposed for solving the environmental pollution caused by non-degradable plastics. Following this idea, plastics would be firstly degraded and then reconstructed. Polyhydroxyalkanoates (PHA) can be produced from the degraded plastic monomers as a choice to recycle among various plastics. PHA, a family of biopolyesters synthesized by many microbes, have attracted great interest in industrial, agricultural and medical sectors due to its biodegradability, biocompatibility, thermoplasticity and carbon neutrality. Moreover, the regulations on PHA monomer compositions, processing technology, and modification methods may further improve the material properties, making PHA a promising alternative to traditional plastics. Furthermore, the application of the "next-generation industrial biotechnology (NGIB)" utilizing extremophiles for PHA production is expected to enhance the PHA market competitiveness, promoting this environmentally friendly bio-based material to partially replace petroleum-based products, and achieve sustainable development with carbon-neutrality. This review summarizes the basic material properties, plastic upcycling via PHA biosynthesis, processing and modification methods of PHA, and biosynthesis of novel PHA.


Assuntos
Petróleo , Poli-Hidroxialcanoatos , Plásticos , Biotecnologia , Carbono
16.
Appl Microbiol Biotechnol ; 107(13): 4153-4164, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37212883

RESUMO

In the quest for novel medications, researchers have kept on studying nature to unearth beneficial plant species with medicinal qualities that may cure various diseases and disorders. These medicinal plants produce different bioactive secondary metabolites with immense therapeutic importance. One such valuable secondary metabolite, reserpine (C33H40N2O9), has been used for centuries to cure various ailments like hypertension, cardiovascular diseases, neurological diseases, breast cancer, and human promyelocytic leukaemia. Rauvolfia spp. (family Apocynaceae) is an essential reservoir of this reserpine. The current review thoroughly covers different non-conventional or in vitro-mediated biotechnological methods adopted for pilot-scale as well as large-scale production of reserpine from Rauvolfia spp., including techniques like multiple shoot culture, callus culture, cell suspension culture, precursor feeding, elicitation, synthetic seed production, scale-up via bioreactor, and hairy root culture. This review further analyses the unexplored and cutting-edge biotechnological tools and techniques to alleviate reserpine production. KEY POINTS: • Reserpine, a vital indole alkaloid from Rauvolfia spp., has been used for centuries to cure several ailments. • Overview of biosynthetic pathways and biotechnological applications for enhanced production of reserpine. • Probes the research gaps and proposes novel alternative techniques to meet the pharmaceutical industry's need for reserpine while reducing the over-exploitation of natural resources.


Assuntos
Alcaloides , Plantas Medicinais , Rauwolfia , Humanos , Reserpina/metabolismo , Biotecnologia/métodos , Reatores Biológicos , Alcaloides/metabolismo , Raízes de Plantas/metabolismo
17.
Planta Med ; 89(10): 1010-1020, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37072112

RESUMO

Recombinant proteins are a major breakthrough in biomedical research with a wide range of applications from diagnostics to therapeutics. Strategic construct design, consistent expression platforms, and suitable upstream and downstream techniques are key considerations to produce commercially viable recombinant proteins. The recombinant antigenic protein production for use either as a diagnostic reagent or subunit vaccine formulation is usually carried out in prokaryotic or eukaryotic expression platforms. Microbial and mammalian systems dominate the biopharmaceutical industry for such applications. However, there is no universal expression system that can meet all the requirements for different types of proteins. The adoptability of any expression system is likely based on the quality and quantity of the proteins that can be produced from it. The huge demand of recombinant proteins for different applications requires an inexpensive production platform for rapid development. The molecular farming scientific community has been promoting the plant system for nearly 3 decades as a cost-effective alternative to produce high-quality proteins for research, diagnostic, and therapeutic applications. Here, we discuss how plant biotechnology could offer solutions for the rapid and scalable production of protein antigens as low-cost diagnostic reagents for use in functional assays.


Assuntos
Doenças Transmissíveis , Agricultura Molecular , Animais , Plantas Geneticamente Modificadas/metabolismo , Biotecnologia/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Doenças Transmissíveis/diagnóstico , Mamíferos/metabolismo
18.
Int J Biol Macromol ; 235: 123929, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36882142

RESUMO

Pectin possesses a dual property of resistance and flexibility and thus has diverse commercial value which has generated research interest on this versatile biopolymer. Formulated products using pectin could be useful in food, pharma, foam, plasticiser and paper substitute industries. Pectin is structurally tailor-made for greater bioactivity and diverse applications. Sustainable biorefinery leaves greener footprints while producing high-value bioproducts like pectin. The essential oils and polyphenols obtained as byproducts from a pectin-based biorefinery are useful in cosmetics, toiletries and fragrance industries. Pectin can be extracted from organic sources following eco-friendly strategies, and the extraction techniques, structural alterations and the applications are continually being upgraded and standardized. Pectin has great applications in diverse areas, and its green synthesis is a welcome development. In future, growing industrial application of pectin is anticipated as research orients on biopolymers, biotechnologies and renewable source-based processes. As the world is gradually adopting greener strategies in sync with the global sustainable development goal, active involvement of policy makers and public participation are prime. Governance and policy framing are essential in the transition of the world economy towards circularity since green circular bioeconomy is ill-understood among the public in general and within the administrative circles in particular. Concerted efforts by researchers, investors, innovators, and policy and decision makers to integrate biorefinery technologies as loops within loop of biological structures and bioprocesses is suggested. The review focusses on generation of the different nature of food wastes including fruits and vegetables with cauterization of their components. It discusses the innovative extraction and biotransformation approaches for these waste conversions into value-added products at cost-effective and eco-friendly way. This article compiles numerous effective and efficient and green way pectin extraction techniques with their advantages with varying success in an integrated manner.


Assuntos
Frutas , Pectinas , Frutas/química , Pectinas/análise , Biotecnologia , Verduras
19.
Microb Biotechnol ; 16(5): 1011-1026, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965151

RESUMO

The growing need of next generation feedstocks for biotechnology spurs an intensification of research on the utilization of methanol as carbon and energy source for biotechnological processes. In this paper, we introduced the methanol-based overproduction of riboflavin into metabolically engineered Bacillus methanolicus MGA3. First, we showed that B. methanolicus naturally produces small amounts of riboflavin. Then, we created B. methanolicus strains overexpressing either homologous or heterologous gene clusters encoding the riboflavin biosynthesis pathway, resulting in riboflavin overproduction. Our results revealed that the supplementation of growth media with sublethal levels of chloramphenicol contributes to a higher plasmid-based riboflavin production titre, presumably due to an increase in plasmid copy number and thus biosynthetic gene dosage. Based on this, we proved that riboflavin production can be increased by exchanging a low copy number plasmid with a high copy number plasmid leading to a final riboflavin titre of about 523 mg L-1 in methanol fed-batch fermentation. The findings of this study showcase the potential of B. methanolicus as a promising host for methanol-based overproduction of extracellular riboflavin and serve as basis for metabolic engineering of next generations of riboflavin overproducing strains.


Assuntos
Engenharia Metabólica , Metanol , Metanol/metabolismo , Plasmídeos , Biotecnologia/métodos , Riboflavina/genética
20.
Plant Biotechnol J ; 21(9): 1734-1744, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36762506

RESUMO

Plant lipids have essential biological roles in plant development and stress responses through their functions in cell membrane formation, energy storage and signalling. Vegetable oil, which is composed mainly of the storage lipid triacylglycerol, also has important applications in food, biofuel and oleochemical industries. Lipid biosynthesis occurs in multiple subcellular compartments and involves the coordinated action of various pathways. Although biochemical and molecular biology research over the last few decades has identified many proteins associated with lipid metabolism, our current understanding of the dynamic protein interactomes involved in lipid biosynthesis, modification and channelling is limited. This review examines advances in the identification and characterization of protein interactomes involved in plant lipid biosynthesis, with a focus on protein complexes consisting of different subunits for sequential reactions such as those in fatty acid biosynthesis and modification, as well as transient or dynamic interactomes formed from enzymes in cooperative pathways such as assemblies of membrane-bound enzymes for triacylglycerol biosynthesis. We also showcase a selection of representative protein interactome structures predicted using AlphaFold2, and discuss current and prospective strategies involving the use of interactome knowledge in plant lipid biotechnology. Finally, unresolved questions in this research area and possible approaches to address them are also discussed.


Assuntos
Lipídeos , Plantas , Estudos Prospectivos , Plantas/genética , Plantas/metabolismo , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos , Biotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA